Visual Analytics Techniques for Trend Detection in Correlation Data

نویسنده

  • Joshua New
چکیده

Domain scientists hope to address grand scientific challenges by exploring the abundance of data generated and made available through modern high-throughput techniques. However, the impact of this large volume of data is limited unless researchers can effectively assimilate the entirety of this complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical scientific investigations can make use of novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters and achieving data reduction. These general tools should be applicable to many disciplines: allowing biologists to develop an intuitive understanding of the structure of coexpression networks and discover genes that reside in critical positions of biological pathways, intelligence analysts to decompose social networks, and climate scientists to model and extrapolate future climate conditions. By using a graph as a universal data representation of correlation, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool integrates techniques such as graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized B-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using real-world workflows from a couple large-scale systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection

Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....

متن کامل

Visual Analytics for Fraud Detection: Focusing on Profile Analysis

Financial institutions are always interested in ensuring security and quality for their customers. Banks, for instance, need to identify and avoid harmful transactions. In order to detect fraudulent operations, data mining techniques based on customer profile generation and verification are commonly used. However, these approaches are not supported by Visual Analytics techniques yet. We propose...

متن کامل

Application of Big Data Analytics in Power Distribution Network

Smart grid enhances optimization in generation, distribution and consumption of the electricity by integrating information and communication technologies into the grid. Today, utilities are moving towards smart grid applications, most common one being deployment of smart meters in advanced metering infrastructure, and the first technical challenge they face is the huge volume of data generated ...

متن کامل

A Visual Analytics Approach for Correlation, Classification, and Regression Analysis

New approaches that combine the strengths of humans and machines are necessary to equip analysts with the proper tools for exploring today’s increasing complex, multivariate data sets. In this paper, a visual data mining framework, called the Multidimensional Data eXplorer (MDX), is described that addresses the challenges of today’s data by combining automated statistical analytics with a highl...

متن کامل

Edge detection in gravity field of the Gheshm sedimentary basin

Edge detection and edge enhancement techniques play an essential role in interpreting potential field data. This paper describes the application of various edge detection techniques to gravity data in order to delineate the edges of subsurface structures. The edge detection methods comprise analytic signal, total horizontal derivative (THDR), theta angle, tilt angle, hyperbolic of tilt angle (H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008